Geometry

6.3 Medians and Altitudes of Triangles

		Λ
Median		$\wedge \chi$
Segment that connects a to a Point of concurrency is called the The centroid is the	of side of a triangle.	A A A
Concurrency of Medians of a Triangle		
The medians of a triangle intersect at a point that is the of the	of the	from each to
Each path goes from the midpoint of one edge to the opposite If <i>SC</i> = 2100 ft, find <i>PS</i> and <i>PC</i> . If <i>BT</i> = 1000 ft, find <i>TC</i> and <i>BC</i> . If <i>PT</i> = 800 ft, find <i>PA</i> and <i>TA</i> .	e corner. The paths me	eet at <i>P</i> .
Find the coordinates of the centroid of $\triangle ABC$ with vertices $A(0, 4), B(-4, -2), \text{ and } C(7, 1).$		

Geometry 6.3	Name:	
Altitudes		
Segment from a and	to the opposite side of a triangle.	
Point of concurrency is called the		
Concurrency of Altitudes of a Triangle		
The lines containing the of a trian	igle are	
Acute $\Delta \rightarrow$ orthocenter triangle		
Right $\Delta \rightarrow$ orthocenter of tria	ngle	
Obtuse $\Delta \rightarrow$ orthocenter of triangle		
Find the orthocenter.		
In an triangle, the vertex angle are all the	,, and from the	
Given: ΔABC is isosceles, \overline{BD} is a median		
Prove: \overline{BD} is an angle bisector	× ×	
Statements	Reasons	
1.	1. A D C	
2.	2.	
3.	3.	
4.	4.	
5.	5.	
6.	6.	
7.	7.	

Assignment: 314 #2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 40, 52, 56, 58, 60, 63 = 25 total